Show your work for full credits.

In $\triangle ABC$, A(1,6), B(5,4), C(-3,-2) are the vertices of the triangle.

1. Sketch the triangle on the given coordinate plane below. (3 pts)

2. Find equations of \overline{AB} in standard form, slope-y intercept form, and slope – point form. (15 pts)

Slope of AB
$$\rightarrow m = \frac{4-6}{5-1} = -\frac{2}{4} = -\frac{1}{2}$$

Slope-point form:
$$y - 6 = -\frac{1}{2}(x - 1)$$

Slope y-intercept form: $y = -\frac{1}{2}x + b$ by using (1, 6), we get

$$6 = -\frac{1}{2}(1) + b \to b = \frac{13}{2}$$

So, we get
$$y = -\frac{1}{2}x + \frac{13}{2}$$

Standard form: Ax + By + C = 0

From the slope y-int form, $\frac{1}{2}x + y - \frac{13}{2} = 0 \rightarrow x + 2y - 13 = 0$

3. Find an equation of perpendicular bisector of \overline{AB} . (10 pts)

We need the midpoint of AB and slope of AB. Since the slope of AB was $-\frac{1}{2}$ from the previous question, slope of the line perpendicular is 2.

Midpoint =
$$\left(\frac{1+5}{2}, \frac{6+4}{2}\right)$$
 = (3,5)

Eq.

$$y - 5 = 2(x - 3)$$

4. Find an equation of perpendicular bisector of \overline{BC} . (10 pts)

We need the midpoint of BC and slope of BC.

$$m_{BC} = \frac{-2-4}{-3-5} = \frac{-6}{-8} = \frac{3}{4}$$

Since the slope of AB was $\frac{3}{4}$ from the previous question, slope of the line perpendicular is $\frac{4}{3}$.

Midpoint =
$$\left(\frac{-3+5}{2}, \frac{-2+4}{2}\right) = (1,1)$$

Eq.

$$y - 1 = \frac{3}{4}(x - 1)$$

5. Find the coordinates of intersection of perpendicular bisectors of \overline{AB} and \overline{BC} . (10 pts)

By setting y's equal to each other,

$$2(x-3) + 5 = \frac{3}{4}(x-1) + 1$$

$$2x - 6 + 5 = \frac{3x}{4} - \frac{3}{4} + 1$$
$$\frac{5}{4}x = \frac{5}{4}$$

Then, by putting x=1 for any equation, you will get y=1 as well. (1, 1)

6. Find the distance between the intersection from #5 and B. (8 pts)

$$d = \sqrt{(5-1)^2 + (4-1)^2} = \sqrt{4^2 + 3^2} = 5$$

7. Find an equation of altitude from A. (10 pts)

Altitude → perpendicular to base

Since the slope of BC was $\frac{3}{4}$ from #4, slope of altitude is $-\frac{4}{3}$. So,

$$y - 6 = -\frac{4}{3}(x - 1)$$

using point A(1, 6)

8. Find an equation of altitude from B. (10 pts)

Altitude → perpendicular to base

Since the slope of AB was -1/2 from #2, slope of altitude is 2 . So,

$$y-4=2(x-5)$$

using point B(5, 4)

9. Let M be the mid point of \overline{AB} . If A(2, a) and M(a - 1, 5), find the coordinates of B. (9 pts)

Since from A to M, you added (a-3, 5-a), you need to add another (a-3, 5-a) to M to get B. So,

The point B becomes

$$(a-1+(a-3),5+(5-a))=(2a-4,10-a)$$

10. C is a point on \overline{AB} and between A and B with A(3,5) and B(10,-9). If AC:CB=2:5, find the coordinates of C. (15 pts)